By intervening on the thermal decomposition reaction of the phenolic resin, they helps to decompose the long chain, crossed organic polymer that is the phenolic resin into light, small size molecules (monomers, dimers). These are able to volatilize more easily, instead of large size molecules that would get gripped over the friction surface.
To obtain a top-notch friction material, it is not enough to protect the phenolic resin. Indeed, it is a key parameter the control the performance and wear of the finished product. However, HOW this organic binder decompose is a crucial factor that will determine the comfort and the NVH properties of the pad. Can we control this? Let’s go deep on that.
We start from the fact that the mentioned phenolic resin transforms into a sticky substrate on the friction surface when it degradates. And, as if it was like a smoker/non-smoker lung, a cleaner surface will help us to avoid groan, noise and vibrations, while obtaining a smooth and stable braking. And how can we do so? The answer is on titanates.
This way, we obtain a cleaner surface and so, when the counterpart contacts the friction material, we do not have that viscous residue between them which, as you might have guessed, will help us to reduce the CoF (μ) amplitude and improve μ stability, which are straightly related with the NVH and groan properties of a friction material.
Nowadays, there are a wide range of titanates with different morphologies and chemical compositions in the market. However, titanates commonly available in friction industry are a fibrous product with health issues. To make them fibre-free either the production costs are increased or they contain other metals on their composition.
On that lead, since 2019 rimsa has join forces with TAM Ceramics to tackle the challenges concerning this particular aspect of a friction material performance with innovative products specially developed for friction industry.
TAM ceramics high quality and cost-effective alternatives includes the new TITAN-S (fibre-safe sodium titanate), while the new TITAN-PS grades are a new option of fibre-safe potassium titanates that contain lower percentage of K2O. TITAN-PV grade guarantees a double digit 0,00% of fibres and ultra-fine particle size.
All them are truly fibre-safe products because doesn’t make fibres while synthesized and have the same mechanism of reaction than the commonly available potassium titanate. Also, TAM collaborates with Buffalo University and Fraunhofer Institut to guarantee by certifications their products are fiber-free.
AKM test evince the similar performance of both sodium and potassium titanates regarding Intra-Stop behaviour and NVH properties, as both share the same mechanism of reaction. TITAN-S also stabilizes the CoF while reducing wear compared to potassium titanate.
Do not hesitate to contact us for any question or requirement you may have. We will be happy to collaborate with you
Visit us
Armenteres s / n – Pol.Ind. MATACÀS- Nave 21 08980
Sant Feliu de Llobregat Barcelona, Spain
Call us
+34 93 666 46 11 / +34 686 140 064
Write to us
friction@rimsa.com